Sleep Disruption & Circadian Rhythm

 

 

2021


Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness.

C. Höhn, S.R. Schmid, C.P. Plamberger, K. Bothe, et al., Clocks & sleep, 2021. 3(1): p. 66-86. 10.3390/clockssleep3010005

 


 

2020


Are Displays Giving Us the Blues?

J.D. Bullough, S. Peana and S.J. Camardello, in SID Symposium Digest of Technical Papers. 2020. https://doi.org/10.1002/sdtp.14066

 


Influences of Circadian Illuminances from Lighting and TV on the Human Locomotor Activity, Sleep Disorder, EEG, HRV, and Melatonin Secretion.

D.H. Kim, C. Kim, S.M. Lee, S. Choi, et al., SID Symposium Digest of Technical Papers, 2020. 51(1): p. 1094-1097. https://doi.org/10.1002/sdtp.14065

 


 

2019


Systematic review of light exposure impact on human circadian rhythm.

L. Tahkamo, T. Partonen and A.K. Pesonen, Chronobiology International, 2019. 36(1510170). https://doi.org/10.1080/07420528.2018.1527773

 


Light Modulation of Human Clocks, Wake, and Sleep.

A.S. Prayag, M. Münch, D. Aeschbach, S.L. Chellappa, et al., Clocks & Sleep, 2019. 1(1): p. 193-208. https://doi.org/10.3390/clockssleep1010017

 


High sensitivity and interindividual variability in the response of the human circadian system to evening light.

A.J.K. Phillips, P. Vidafar, A.C. Burns, E.M. McGlashan, et al., Proceedings of the National Academy of Sciences of the United States of America, 2019. 116(24): p. 12019-12024. https://doi.org/10.1073/pnas.1901824116

 


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8. https://doi.org/10.1038/s41514-019-0038-6

 


Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight.

J.W. Mouland, F. Martial, A. Watson, R.J. Lucas, et al., Current Biology, 2019. 29(24): p. 4260-4267.e4. https://doi.org/10.1016/j.cub.2019.10.028

 


Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner.

A. Masís-Vargas, D. Hicks, A. Kalsbeek and J. Mendoza, Physiological Reports, 2019. 7(20): p. e14257-e14257. https://doi.org/10.14814/phy2.14257

 


Influence of Circadian Disruption Associated With Artificial Light at Night on Micturition Patterns in Shift Workers.

S.J. Kim, J.W. Kim, Y.S. Cho, K.J. Chung, et al., International Neurourology Journal, 2019. 23(4): p. 258-264. https://doi.org/10.5213/inj.1938236.118

 


Perception of Sleep Disturbances due to Bedtime Use of Blue Light-Emitting Devices and Its Impact on Habits and Sleep Quality among Young Medical Students.

A. Jniene, L. Errguig, A.J. El Hangouche, H. Rkain, et al., BioMed research international, 2019. 2019: p. 7012350-7012350. https://doi.org/10.1155/2019/7012350

 


Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats.

B. Gladanac, J. Jonkman, C.M. Shapiro, T.J. Brown, et al., Frontiers in neuroscience, 2019. 13: p. 954-954. https://doi.org/10.3389/fnins.2019.00954

 


Poor sleep and adolescent obesity risk: a narrative review of potential mechanisms.

K.M. Duraccio, K.N. Krietsch, M.L. Chardon, T.R. Van Dyk, et al., Adolescent health, medicine and therapeutics, 2019. 10: p. 117-130. https://doi.org/10.2147/AHMT.S219594

 


Hunger hormone and sleep responses to the built-in blue-light filter on an electronic device: a pilot study.

M.W. Driller, G. Jacobson and L. Uiga, Sleep science (Sao Paulo, Brazil), 2019. 12(3): p. 171-177. https://doi.org/10.5935/1984-0063.20190074

 


 

 

2018


On-orbit sleep problems of astronauts and countermeasures.

B. Wu, Y. Wang, X. Wu, D. Liu, et al., Military Medical Research, 2018. 5(1): p. 17. https://doi.org/10.1186/s40779-018-0165-6

 


Acute alerting effects of light: A systematic literature review.

J.L.T. Souman, Angelica M.te Pas, Susan F.van Ee, RaymondVlaskamp, Björn N. S., Behavioural Brain Research, 2018. 337: p. 228-239. https://doi.org/10.1016/j.bbr.2017.09.016

 


Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review.

L.B. Samuelsson, D.H. Bovbjerg, K.A. Roecklein and M.H. Hall, Neurosci Biobehav Rev. , 2018. 84: p. 35-48. https://doi.org/10.1016/j.neubiorev.2017.10.011.

 


Overnight smartphone use: A new public health challenge? A novel study design based on high-resolution smartphone data.

N.H. Rod, A.S. Dissing, A. Clark, T.A. Gerds, et al., PloS one, 2018. 13(10): p. e0204811-e0204811. https://doi.org/10.1371/journal.pone.0204811

 


Does the iPad Night Shift mode reduce melatonin suppression?

R.P. Nagare, B.Figueiro, M. G., Lighting Research & Technology, 2018: p. 1477153517748189. https://doi.org/10.1177/1477153517748189

 


Lack of sleep is associated with internet use for leisure.

S.Y. Kim, Min-SuPark, BumjungKim, Jin-HwanChoi, Hyo Geun, PLOS ONE, 2018. 13(1): p. e0191713. https://doi.org/10.1371/journal.pone.0191713

 


LED Illumination – A Hazard to the Eye?

M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44. https://doi.org/10.1002/opph.201800029

 


Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.

A.S. Fisk, S.K.E. Tam, L.A. Brown, V.V. Vyazovskiy, et al., Frontiers in Neurology, 2018. 9: p. 56. https://doi.org/10.3389/fneur.2018.00056

 


An update on adolescent sleep: New evidence informing the perfect storm model.

S.J.W. Crowley, Amy R.Tarokh, LeilaCarskadon, Mary A., Journal of Adolescence, 2018. 67: p. 55-65. https://doi.org/10.1016/j.adolescence.2018.06.001

 


Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.

R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018. https://arxiv.org/abs/1806.04751

 


Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.

E.D.D. Chinoy, Jeanne F.Czeisler, Charles A., Physiological Reports, 2018. 6(10): p. e13692. https://doi.org/10.14814/phy2.13692

 


Change of blue light hazard and circadian effect of LED backlight displayer with color temperature and age.

Y. Chaopu, F. Wenqing, T. Jiancheng, Y. Fan, et al., Optics Express, 2018. 26(21): p. 27021-27032. https://doi.org/10.1364/OE.26.027021


 

 

2017


The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

S.A. Rahman, M.A. St Hilaire and S.W. Lockley, Physiol Behav, 2017. 177: p. 221-229. https://doi.org/10.1016/j.physbeh.2017.05.002

 


Short and long-term health consequences of sleep disruption.

G. Medic, M. Wille and M.E. Hemels, Nature and science of sleep, 2017. 9: p. 151-161. https://doi.org/10.2147/NSS.S134864

 


Relationship between Mobile Phone Addiction and the Incidence of Poor and Short Sleep among Korean Adolescents: a Longitudinal Study of the Korean Children and Youth Panel Survey.

J.E. Lee, S.-I. Jang, Y.J. Ju, W. Kim, et al., J Korean Med Sci, 2017. 32(7): p. 1166-1172. http://synapse.koreamed.org/DOIx.php?id=10.3346%2Fjkms.2017.32.7.1166

 


The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature.

J.G. Lawrenson, C.C. Hull and L.E. Downie, Ophthalmic and Physiological Optics, 2017. 37(6): p. 644-654. https://doi.org/10.1111/opo.12406

 


Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

A.L. Opperhuizen, D.J. Stenvers, R.D. Jansen, E. Foppen, et al., Diabetologia, 2017. 60(7): p. 1333-1343. https://doi.org/10.1007/s00125-017-4262-y

 


Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies.

M. Hatori, C. Gronfier, R.N. Van Gelder, P.S. Bernstein, et al., npj Aging and Mechanisms of Disease, 2017. 3(1): p. 9. https://doi.org/10.1038/s41514-017-0010-2

 


Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities.

A. Green, M. Cohen-Zion, A. Haim and Y. Dagan, Chronobiology International, 2017. 34(7): p. 855-865. https://doi.org/10.1080/07420528.2017.1324878

 


Disruption of Circadian Rhythms by Light During Day and Night.

M.G. Figueiro, Current sleep medicine reports, 2017. 3(2): p. 76-84. https://doi.org/10.1007/s40675-017-0069-0

 


 

 

2016


Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.

Y. Touitou, D. Touitou and A. Reinberg, Journal of Physiology-Paris, 2016. 110(4, Part B): p. 467-479. https://doi.org/10.1016/j.jphysparis.2017.05.001

 


Effects of blue light on the circadian system and eye physiology.

G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72. http://www.molvis.org/molvis/v22/61

 


Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

G.D.M. Potter, D.J. Skene, J. Arendt, J.E. Cade, et al., Endocrine Reviews, 2016. 37(6): p. 584-608. https://doi.orf/10.1210/er.2016-1083

 


Aging-Related Circadian Disruption and Its Correction.

D.G. Gubin, T.V. Bolotnova, S.S. V, A.G. Naymushina, et al., in Treatment Options for Aging, SMGroup, Editor. 2016, SMGroup. http://www.smgebooks.com/treatment-options-for-aging/chapters/TOA-16-02.pdf

 


Relationship between Oxidative Stress, Circadian Rhythms, and AMD.

M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18. https://doi.org/10.1155/2016/7420637

 


 

 

2015


Light at night pollution of the internal clock, a public health issue.

Y. Touitou, Bull Acad Natl Med, 2015. 199(7): p. 1081-1098.

 


Analysis of circadian properties and healthy levels of blue light from smartphones at night.

J.H. Oh, H. Yoo, H.K. Park and Y.R. Do, Nature Scientific Reports, 2015. 5:11325. https://doi.org/10.1038/srep11325

 


Screen time and sleep among school-aged children and adolescents: a systematic literature review.

L. Hale and S. Guan, Sleep Med Rev, 2015. 21: p. 50-8. https://doi.org/10.1016/j.smrv.2014.07.007

 


Blue Light: A Blessing or a Curse?

C.C. Gomes and S. Preto, Procedia Manufacturing, 2015. 3: p. 4472-4479. https://doi.org/10.1016/j.promfg.2015.07.459

 


Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty.

S.J. Crowley, S.W. Cain, A.C. Burns, C. Acebo, et al., J Clin Endocrinol Metab, 2015. 100(4067-4073). https://doi.org/10.1210/jc.2015-2775

 


Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.

A.-M. Chang, D. Aeschbach, J.F. Duffy and C.A. Czeisler, Proceedings of the National Academy of Sciences, 2015. 112(4): p. 1232. http://www.pnas.org/content/112/4/1232.abstract

 


 

 

2014


Association between electronic media use and sleep habits: an eight-day follow-up study.

V. Kubiszewski, R. Fontaine, E. Rusch and E. Hazouard, International Journal of Adolescence and Youth, 2014. 19(3): p. 395-407. https://doi.org/10.1080/02673843.2012.751039

 


Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias.

T. Arora, E. Broglia, G.N. Thomas and S. Taheri, Sleep Med, 2014. 15(2): p. 240-7. https://doi.org/10.1016/j.sleep.2013.08.799

 


Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light.

S.A. Rahman, E.E. Flynn-Evans, D. Aeschbach, G.C. Brainard, et al., Sleep, 2014. 37(2): p. 271-281. https://doi.org/10.5665/sleep.3396

 


 

 

2013


Out of the Lab and into the Bathroom: Evening Short-Term Exposure to Conventional Light Suppresses Melatonin and Increases Alertness Perception.

A. Wahnschaffe, S. Haedel, A. Rodenbeck, C. Stoll, et al., International Journal of Molecular Sciences, 2013. 14(2): p. 2573-2589. https://doi.org/10.3390/ijms14022573

 


 

 

2012


Human responses to bright light of different durations.

A.-M. Chang, N. Santhi, M. St Hilaire, C. Gronfier, et al., The Journal of Physiology, 2012. 590(13): p. 3103-3112. https://doi.org/10.1113/jphysiol.2011.226555

 


 

 

2011


Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.

 


Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.

 


 

2010


Circadian light.

M.S. Rea, F.M. G., A. Bierman and J.D. Bullough, Journal of Circadian Rhythms, 2010. 8(1740-3391 (Electronic)). http://www.jcircadianrhythms.com/content/8/1/2

 


What’s in a Color? The Unique Human Health Effect of Blue Light.

D.C. Holzman, Environmental Health Perspectives, 2010. 118(1): p. A22-A27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831986/pdf/ehp-118-a22.pdf

 


Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.

J.J. Gooley, S.M. Rajaratnam, G.C. Brainard, R.E. Kronauer, et al., Sci Transl Med, 2010. 2(31): p. 31ra33. https://doi.org/10.1126/scitranslmed.3000741

 


The Effects of Red and Blue Lights on Circadian Variations in Cortisol, Alpha Amylase, and Melatonin.

M.G. Figueiro and M.S. Rea, International Journal of Endocrinology, 2010. 2010: p. 829351. https://doi.org/10.1155/2010/829351

 


 

 

2009


Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.

A. Lerchl, C. Schindler, K. Eichhorn, F. Kley, et al., Journal of Pineal Research, 2009. 47(2): p. 143-146. https://doi.org/10.1111/j.1600-079X.2009.00691.x

 


 

 

2008


Circadian photoreception: ageing and the eye’s important role in systemic health.

P.L. Turner and M.A. Mainster, The British journal of ophthalmology, 2008. 92(11): p. 1439-1444. https://doi.org/10.1136/bjo.2008.141747

 


Sensitivity of the human circadian system to short-wavelength (420-nm) light.

G.C. Brainard, D. Sliney, J.P. Hanifin, G. Glickman, et al., J Biol Rhythms, 2008. 23(5): p. 379-86. https://doi.org/10.1177/0748730408323089

 


 

 

2007


Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.

F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128. https://doi.org/10.1016/j.cub.2007.11.034

 


 

 

2002


Ocular input for human melatonin regulation: relevance to breast cancer.

G. Glickman, R. Levin and G.C. Brainard, Neuroendocrinology Letters, 2002. 23: p. 17-22. https://www.ncbi.nlm.nih.gov/pubmed/12163843

 


 

2001


An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans

K. Thapan, J. Arendt and D.J. Skene, The Journal of Physiology, 2001. 535(Pt 1): p. 261-267. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00261.x

 


Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor

G.C. Brainard, J.P. Hanifin, J.M. Greeson, B. Byrne, et al., The Journal of neuroscience : the official journal of the Society for Neuroscience, 2001. 21(16): p. 6405-6412. https://doi.org/10.1523/JNEUROSCI.21-16-06405.2001

 


Scroll to Top