Sleep Disruption & Circadian Rhythm

Blue light exposure later in the day makes it harder to fall asleep and sleep well. These studies investigate blue light’s role in circadian rhythm changes, sleep disruption and related health effects.

 

 

2019


Systematic review of light exposure impact on human circadian rhythm.

L. Tahkamo, T. Partonen and A.K. Pesonen, Chronobiology International, 2019. 36(1510170). https://doi.org/10.1080/07420528.2018.1527773

 


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8. https://doi.org/10.1038/s41514-019-0038-6

 


Poor sleep and adolescent obesity risk: a narrative review of potential mechanisms.

K.M. Duraccio, K.N. Krietsch, M.L. Chardon, T.R. Van Dyk, et al., Adolescent health, medicine and therapeutics, 2019. 10: p. 117-130. https://doi.org/10.2147/AHMT.S219594

 


 

 

2018


On-orbit sleep problems of astronauts and countermeasures.

B. Wu, Y. Wang, X. Wu, D. Liu, et al., Military Medical Research, 2018. 5(1): p. 17. https://doi.org/10.1186/s40779-018-0165-6

 


Acute alerting effects of light: A systematic literature review.

J.L.T. Souman, Angelica M.te Pas, Susan F.van Ee, RaymondVlaskamp, Björn N. S., Behavioural Brain Research, 2018. 337: p. 228-239. https://doi.org/10.1016/j.bbr.2017.09.016

 


Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review.

L.B. Samuelsson, D.H. Bovbjerg, K.A. Roecklein and M.H. Hall, Neurosci Biobehav Rev. , 2018. 84: p. 35-48. https://doi.org/10.1016/j.neubiorev.2017.10.011.

 


Does the iPad Night Shift mode reduce melatonin suppression?

R.P. Nagare, B.Figueiro, M. G., Lighting Research & Technology, 2018: p. 1477153517748189. https://doi.org/10.1177/1477153517748189

 


Lack of sleep is associated with internet use for leisure.

S.Y. Kim, Min-SuPark, BumjungKim, Jin-HwanChoi, Hyo Geun, PLOS ONE, 2018. 13(1): p. e0191713. https://doi.org/10.1371/journal.pone.0191713

 


LED Illumination – A Hazard to the Eye?

M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44. https://doi.org/10.1002/opph.201800029

 


Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.

A.S. Fisk, S.K.E. Tam, L.A. Brown, V.V. Vyazovskiy, et al., Frontiers in Neurology, 2018. 9: p. 56. https://doi.org/10.3389/fneur.2018.00056

 


An update on adolescent sleep: New evidence informing the perfect storm model.

S.J.W. Crowley, Amy R.Tarokh, LeilaCarskadon, Mary A., Journal of Adolescence, 2018. 67: p. 55-65. https://doi.org/10.1016/j.adolescence.2018.06.001

 


Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.

R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018. https://arxiv.org/abs/1806.04751

 


Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.

E.D.D. Chinoy, Jeanne F.Czeisler, Charles A., Physiological Reports, 2018. 6(10): p. e13692. https://doi.org/10.14814/phy2.13692

 


 

 

2017


The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

S.A. Rahman, M.A. St Hilaire and S.W. Lockley, Physiol Behav, 2017. 177: p. 221-229. https://doi.org/10.1016/j.physbeh.2017.05.002

 


Short and long-term health consequences of sleep disruption.

G. Medic, M. Wille and M.E. Hemels, Nature and science of sleep, 2017. 9: p. 151-161. https://doi.org/10.2147/NSS.S134864

 


Relationship between Mobile Phone Addiction and the Incidence of Poor and Short Sleep among Korean Adolescents: a Longitudinal Study of the Korean Children and Youth Panel Survey.

J.E. Lee, S.-I. Jang, Y.J. Ju, W. Kim, et al., J Korean Med Sci, 2017. 32(7): p. 1166-1172. http://synapse.koreamed.org/DOIx.php?id=10.3346%2Fjkms.2017.32.7.1166

 


The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature.

J.G. Lawrenson, C.C. Hull and L.E. Downie, Ophthalmic and Physiological Optics, 2017. 37(6): p. 644-654. https://doi.org/10.1111/opo.12406

 


Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies.

M. Hatori, C. Gronfier, R.N. Van Gelder, P.S. Bernstein, et al., npj Aging and Mechanisms of Disease, 2017. 3(1): p. 9. https://doi.org/10.1038/s41514-017-0010-2

 


Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities.

A. Green, M. Cohen-Zion, A. Haim and Y. Dagan, Chronobiology International, 2017. 34(7): p. 855-865. https://doi.org/10.1080/07420528.2017.1324878

 


Disruption of Circadian Rhythms by Light During Day and Night.

M.G. Figueiro, Current sleep medicine reports, 2017. 3(2): p. 76-84. https://doi.org/10.1007/s40675-017-0069-0

 


 

 

2016


Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.

Y. Touitou, D. Touitou and A. Reinberg, Journal of Physiology-Paris, 2016. 110(4, Part B): p. 467-479. https://doi.org/10.1016/j.jphysparis.2017.05.001

 


Effects of blue light on the circadian system and eye physiology.

G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72. http://www.molvis.org/molvis/v22/61

 


Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

G.D.M. Potter, D.J. Skene, J. Arendt, J.E. Cade, et al., Endocrine Reviews, 2016. 37(6): p. 584-608. https://doi.orf/10.1210/er.2016-1083

 


Aging-Related Circadian Disruption and Its Correction.

D.G. Gubin, T.V. Bolotnova, S.S. V, A.G. Naymushina, et al., in Treatment Options for Aging, SMGroup, Editor. 2016, SMGroup. http://www.smgebooks.com/treatment-options-for-aging/chapters/TOA-16-02.pdf

 


Relationship between Oxidative Stress, Circadian Rhythms, and AMD.

M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18. https://doi.org/10.1155/2016/7420637

 


 

 

2015


Analysis of circadian properties and healthy levels of blue light from smartphones at night.

J.H. Oh, H. Yoo, H.K. Park and Y.R. Do, Nature Scientific Reports, 2015. 5:11325. https://doi.org/10.1038/srep11325

 


Screen time and sleep among school-aged children and adolescents: a systematic literature review.

L. Hale and S. Guan, Sleep Med Rev, 2015. 21: p. 50-8. https://doi.org/10.1016/j.smrv.2014.07.007

 


Blue Light: A Blessing or a Curse?

C.C. Gomes and S. Preto, Procedia Manufacturing, 2015. 3: p. 4472-4479. https://doi.org/10.1016/j.promfg.2015.07.459

 


Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty.

S.J. Crowley, S.W. Cain, A.C. Burns, C. Acebo, et al., J Clin Endocrinol Metab, 2015. 100(4067-4073). https://doi.org/10.1210/jc.2015-2775

 


Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.

A.-M. Chang, D. Aeschbach, J.F. Duffy and C.A. Czeisler, Proceedings of the National Academy of Sciences, 2015. 112(4): p. 1232. http://www.pnas.org/content/112/4/1232.abstract

 


 

 

2014


Association between electronic media use and sleep habits: an eight-day follow-up study.

V. Kubiszewski, R. Fontaine, E. Rusch and E. Hazouard, International Journal of Adolescence and Youth, 2014. 19(3): p. 395-407. https://doi.org/10.1080/02673843.2012.751039

 


Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias.

T. Arora, E. Broglia, G.N. Thomas and S. Taheri, Sleep Med, 2014. 15(2): p. 240-7. https://doi.org/10.1016/j.sleep.2013.08.799

 


 

 

2013


Out of the Lab and into the Bathroom: Evening Short-Term Exposure to Conventional Light Suppresses Melatonin and Increases Alertness Perception.

A. Wahnschaffe, S. Haedel, A. Rodenbeck, C. Stoll, et al., International Journal of Molecular Sciences, 2013. 14(2): p. 2573-2589. https://doi.org/10.3390/ijms14022573

 


 

 

2012


Human responses to bright light of different durations.

A.-M. Chang, N. Santhi, M. St Hilaire, C. Gronfier, et al., The Journal of Physiology, 2012. 590(13): p. 3103-3112. https://doi.org/10.1113/jphysiol.2011.226555

 


 

 

2011


Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.

 


 

 

2010


Circadian light.

M.S. Rea, F.M. G., A. Bierman and J.D. Bullough, Journal of Circadian Rhythms, 2010. 8(1740-3391 (Electronic)). http://www.jcircadianrhythms.com/content/8/1/2

 


Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.

J.J. Gooley, S.M. Rajaratnam, G.C. Brainard, R.E. Kronauer, et al., Sci Transl Med, 2010. 2(31): p. 31ra33. https://doi.org/10.1126/scitranslmed.3000741

 


 

 

2009


Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.

A. Lerchl, C. Schindler, K. Eichhorn, F. Kley, et al., Journal of Pineal Research, 2009. 47(2): p. 143-146. https://doi.org/10.1111/j.1600-079X.2009.00691.x

 


 

 

2008


Circadian photoreception: ageing and the eye’s important role in systemic health.

P.L. Turner and M.A. Mainster, The British journal of ophthalmology, 2008. 92(11): p. 1439-1444. https://doi.org/10.1136/bjo.2008.141747

 


 

 

2007


Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.

F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128. https://doi.org/10.1016/j.cub.2007.11.034

 


 

 

2002


Ocular input for human melatonin regulation: relevance to breast cancer.

G. Glickman, R. Levin and G.C. Brainard, Neuroendocrinology Letters, 2002. 23: p. 17-22. https://www.ncbi.nlm.nih.gov/pubmed/12163843