Sleep Disruption & Circadian Rhythm




Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness.

C. Höhn, S.R. Schmid, C.P. Plamberger, K. Bothe, et al., Clocks & sleep, 2021. 3(1): p. 66-86. 10.3390/clockssleep3010005




Are Displays Giving Us the Blues?

J.D. Bullough, S. Peana and S.J. Camardello, in SID Symposium Digest of Technical Papers. 2020.


Influences of Circadian Illuminances from Lighting and TV on the Human Locomotor Activity, Sleep Disorder, EEG, HRV, and Melatonin Secretion.

D.H. Kim, C. Kim, S.M. Lee, S. Choi, et al., SID Symposium Digest of Technical Papers, 2020. 51(1): p. 1094-1097.




Systematic review of light exposure impact on human circadian rhythm.

L. Tahkamo, T. Partonen and A.K. Pesonen, Chronobiology International, 2019. 36(1510170).


Light Modulation of Human Clocks, Wake, and Sleep.

A.S. Prayag, M. Münch, D. Aeschbach, S.L. Chellappa, et al., Clocks & Sleep, 2019. 1(1): p. 193-208.


High sensitivity and interindividual variability in the response of the human circadian system to evening light.

A.J.K. Phillips, P. Vidafar, A.C. Burns, E.M. McGlashan, et al., Proceedings of the National Academy of Sciences of the United States of America, 2019. 116(24): p. 12019-12024.


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8.


Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight.

J.W. Mouland, F. Martial, A. Watson, R.J. Lucas, et al., Current Biology, 2019. 29(24): p. 4260-4267.e4.


Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner.

A. Masís-Vargas, D. Hicks, A. Kalsbeek and J. Mendoza, Physiological Reports, 2019. 7(20): p. e14257-e14257.


Influence of Circadian Disruption Associated With Artificial Light at Night on Micturition Patterns in Shift Workers.

S.J. Kim, J.W. Kim, Y.S. Cho, K.J. Chung, et al., International Neurourology Journal, 2019. 23(4): p. 258-264.


Perception of Sleep Disturbances due to Bedtime Use of Blue Light-Emitting Devices and Its Impact on Habits and Sleep Quality among Young Medical Students.

A. Jniene, L. Errguig, A.J. El Hangouche, H. Rkain, et al., BioMed research international, 2019. 2019: p. 7012350-7012350.


Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats.

B. Gladanac, J. Jonkman, C.M. Shapiro, T.J. Brown, et al., Frontiers in neuroscience, 2019. 13: p. 954-954.


Poor sleep and adolescent obesity risk: a narrative review of potential mechanisms.

K.M. Duraccio, K.N. Krietsch, M.L. Chardon, T.R. Van Dyk, et al., Adolescent health, medicine and therapeutics, 2019. 10: p. 117-130.


Hunger hormone and sleep responses to the built-in blue-light filter on an electronic device: a pilot study.

M.W. Driller, G. Jacobson and L. Uiga, Sleep science (Sao Paulo, Brazil), 2019. 12(3): p. 171-177.





On-orbit sleep problems of astronauts and countermeasures.

B. Wu, Y. Wang, X. Wu, D. Liu, et al., Military Medical Research, 2018. 5(1): p. 17.


Acute alerting effects of light: A systematic literature review.

J.L.T. Souman, Angelica M.te Pas, Susan F.van Ee, RaymondVlaskamp, Björn N. S., Behavioural Brain Research, 2018. 337: p. 228-239.


Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review.

L.B. Samuelsson, D.H. Bovbjerg, K.A. Roecklein and M.H. Hall, Neurosci Biobehav Rev. , 2018. 84: p. 35-48.


Overnight smartphone use: A new public health challenge? A novel study design based on high-resolution smartphone data.

N.H. Rod, A.S. Dissing, A. Clark, T.A. Gerds, et al., PloS one, 2018. 13(10): p. e0204811-e0204811.


Does the iPad Night Shift mode reduce melatonin suppression?

R.P. Nagare, B.Figueiro, M. G., Lighting Research & Technology, 2018: p. 1477153517748189.


Lack of sleep is associated with internet use for leisure.

S.Y. Kim, Min-SuPark, BumjungKim, Jin-HwanChoi, Hyo Geun, PLOS ONE, 2018. 13(1): p. e0191713.


LED Illumination – A Hazard to the Eye?

M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44.


Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.

A.S. Fisk, S.K.E. Tam, L.A. Brown, V.V. Vyazovskiy, et al., Frontiers in Neurology, 2018. 9: p. 56.


An update on adolescent sleep: New evidence informing the perfect storm model.

S.J.W. Crowley, Amy R.Tarokh, LeilaCarskadon, Mary A., Journal of Adolescence, 2018. 67: p. 55-65.


Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.

R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018.


Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.

E.D.D. Chinoy, Jeanne F.Czeisler, Charles A., Physiological Reports, 2018. 6(10): p. e13692.


Change of blue light hazard and circadian effect of LED backlight displayer with color temperature and age.

Y. Chaopu, F. Wenqing, T. Jiancheng, Y. Fan, et al., Optics Express, 2018. 26(21): p. 27021-27032.




The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

S.A. Rahman, M.A. St Hilaire and S.W. Lockley, Physiol Behav, 2017. 177: p. 221-229.


Short and long-term health consequences of sleep disruption.

G. Medic, M. Wille and M.E. Hemels, Nature and science of sleep, 2017. 9: p. 151-161.


Relationship between Mobile Phone Addiction and the Incidence of Poor and Short Sleep among Korean Adolescents: a Longitudinal Study of the Korean Children and Youth Panel Survey.

J.E. Lee, S.-I. Jang, Y.J. Ju, W. Kim, et al., J Korean Med Sci, 2017. 32(7): p. 1166-1172.


The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature.

J.G. Lawrenson, C.C. Hull and L.E. Downie, Ophthalmic and Physiological Optics, 2017. 37(6): p. 644-654.


Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

A.L. Opperhuizen, D.J. Stenvers, R.D. Jansen, E. Foppen, et al., Diabetologia, 2017. 60(7): p. 1333-1343.


Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies.

M. Hatori, C. Gronfier, R.N. Van Gelder, P.S. Bernstein, et al., npj Aging and Mechanisms of Disease, 2017. 3(1): p. 9.


Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities.

A. Green, M. Cohen-Zion, A. Haim and Y. Dagan, Chronobiology International, 2017. 34(7): p. 855-865.


Disruption of Circadian Rhythms by Light During Day and Night.

M.G. Figueiro, Current sleep medicine reports, 2017. 3(2): p. 76-84.





Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.

Y. Touitou, D. Touitou and A. Reinberg, Journal of Physiology-Paris, 2016. 110(4, Part B): p. 467-479.


Effects of blue light on the circadian system and eye physiology.

G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72.


Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

G.D.M. Potter, D.J. Skene, J. Arendt, J.E. Cade, et al., Endocrine Reviews, 2016. 37(6): p. 584-608. https://doi.orf/10.1210/er.2016-1083


Aging-Related Circadian Disruption and Its Correction.

D.G. Gubin, T.V. Bolotnova, S.S. V, A.G. Naymushina, et al., in Treatment Options for Aging, SMGroup, Editor. 2016, SMGroup.


Relationship between Oxidative Stress, Circadian Rhythms, and AMD.

M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18.





Light at night pollution of the internal clock, a public health issue.

Y. Touitou, Bull Acad Natl Med, 2015. 199(7): p. 1081-1098.


Analysis of circadian properties and healthy levels of blue light from smartphones at night.

J.H. Oh, H. Yoo, H.K. Park and Y.R. Do, Nature Scientific Reports, 2015. 5:11325.


Screen time and sleep among school-aged children and adolescents: a systematic literature review.

L. Hale and S. Guan, Sleep Med Rev, 2015. 21: p. 50-8.


Blue Light: A Blessing or a Curse?

C.C. Gomes and S. Preto, Procedia Manufacturing, 2015. 3: p. 4472-4479.


Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty.

S.J. Crowley, S.W. Cain, A.C. Burns, C. Acebo, et al., J Clin Endocrinol Metab, 2015. 100(4067-4073).


Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.

A.-M. Chang, D. Aeschbach, J.F. Duffy and C.A. Czeisler, Proceedings of the National Academy of Sciences, 2015. 112(4): p. 1232.





Association between electronic media use and sleep habits: an eight-day follow-up study.

V. Kubiszewski, R. Fontaine, E. Rusch and E. Hazouard, International Journal of Adolescence and Youth, 2014. 19(3): p. 395-407.


Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias.

T. Arora, E. Broglia, G.N. Thomas and S. Taheri, Sleep Med, 2014. 15(2): p. 240-7.


Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light.

S.A. Rahman, E.E. Flynn-Evans, D. Aeschbach, G.C. Brainard, et al., Sleep, 2014. 37(2): p. 271-281.





Out of the Lab and into the Bathroom: Evening Short-Term Exposure to Conventional Light Suppresses Melatonin and Increases Alertness Perception.

A. Wahnschaffe, S. Haedel, A. Rodenbeck, C. Stoll, et al., International Journal of Molecular Sciences, 2013. 14(2): p. 2573-2589.





Human responses to bright light of different durations.

A.-M. Chang, N. Santhi, M. St Hilaire, C. Gronfier, et al., The Journal of Physiology, 2012. 590(13): p. 3103-3112.





Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438.


Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438.




Circadian light.

M.S. Rea, F.M. G., A. Bierman and J.D. Bullough, Journal of Circadian Rhythms, 2010. 8(1740-3391 (Electronic)).


What’s in a Color? The Unique Human Health Effect of Blue Light.

D.C. Holzman, Environmental Health Perspectives, 2010. 118(1): p. A22-A27.


Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.

J.J. Gooley, S.M. Rajaratnam, G.C. Brainard, R.E. Kronauer, et al., Sci Transl Med, 2010. 2(31): p. 31ra33.


The Effects of Red and Blue Lights on Circadian Variations in Cortisol, Alpha Amylase, and Melatonin.

M.G. Figueiro and M.S. Rea, International Journal of Endocrinology, 2010. 2010: p. 829351.





Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.

A. Lerchl, C. Schindler, K. Eichhorn, F. Kley, et al., Journal of Pineal Research, 2009. 47(2): p. 143-146.





Circadian photoreception: ageing and the eye’s important role in systemic health.

P.L. Turner and M.A. Mainster, The British journal of ophthalmology, 2008. 92(11): p. 1439-1444.


Sensitivity of the human circadian system to short-wavelength (420-nm) light.

G.C. Brainard, D. Sliney, J.P. Hanifin, G. Glickman, et al., J Biol Rhythms, 2008. 23(5): p. 379-86.





Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.

F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128.





Ocular input for human melatonin regulation: relevance to breast cancer.

G. Glickman, R. Levin and G.C. Brainard, Neuroendocrinology Letters, 2002. 23: p. 17-22.




An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans

K. Thapan, J. Arendt and D.J. Skene, The Journal of Physiology, 2001. 535(Pt 1): p. 261-267.


Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor

G.C. Brainard, J.P. Hanifin, J.M. Greeson, B. Byrne, et al., The Journal of neuroscience : the official journal of the Society for Neuroscience, 2001. 21(16): p. 6405-6412.


Scroll to Top