2021
Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness.
C. Höhn, S.R. Schmid, C.P. Plamberger, K. Bothe, et al., Clocks & sleep, 2021. 3(1): p. 66-86. 10.3390/clockssleep3010005
2020
Are Displays Giving Us the Blues?
J.D. Bullough, S. Peana and S.J. Camardello, in SID Symposium Digest of Technical Papers. 2020. https://doi.org/10.1002/sdtp.14066
Influences of Circadian Illuminances from Lighting and TV on the Human Locomotor Activity, Sleep Disorder, EEG, HRV, and Melatonin Secretion.
D.H. Kim, C. Kim, S.M. Lee, S. Choi, et al., SID Symposium Digest of Technical Papers, 2020. 51(1): p. 1094-1097. https://doi.org/10.1002/sdtp.14065
2019
Systematic review of light exposure impact on human circadian rhythm.
L. Tahkamo, T. Partonen and A.K. Pesonen, Chronobiology International, 2019. 36(1510170). https://doi.org/10.1080/07420528.2018.1527773
Light Modulation of Human Clocks, Wake, and Sleep.
A.S. Prayag, M. Münch, D. Aeschbach, S.L. Chellappa, et al., Clocks & Sleep, 2019. 1(1): p. 193-208. https://doi.org/10.3390/clockssleep1010017
High sensitivity and interindividual variability in the response of the human circadian system to evening light.
A.J.K. Phillips, P. Vidafar, A.C. Burns, E.M. McGlashan, et al., Proceedings of the National Academy of Sciences of the United States of America, 2019. 116(24): p. 12019-12024. https://doi.org/10.1073/pnas.1901824116
Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.
T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8. https://doi.org/10.1038/s41514-019-0038-6
Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight.
J.W. Mouland, F. Martial, A. Watson, R.J. Lucas, et al., Current Biology, 2019. 29(24): p. 4260-4267.e4. https://doi.org/10.1016/j.cub.2019.10.028
Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner.
A. Masís-Vargas, D. Hicks, A. Kalsbeek and J. Mendoza, Physiological Reports, 2019. 7(20): p. e14257-e14257. https://doi.org/10.14814/phy2.14257
Influence of Circadian Disruption Associated With Artificial Light at Night on Micturition Patterns in Shift Workers.
S.J. Kim, J.W. Kim, Y.S. Cho, K.J. Chung, et al., International Neurourology Journal, 2019. 23(4): p. 258-264. https://doi.org/10.5213/inj.1938236.118
Perception of Sleep Disturbances due to Bedtime Use of Blue Light-Emitting Devices and Its Impact on Habits and Sleep Quality among Young Medical Students.
A. Jniene, L. Errguig, A.J. El Hangouche, H. Rkain, et al., BioMed research international, 2019. 2019: p. 7012350-7012350. https://doi.org/10.1155/2019/7012350
Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats.
B. Gladanac, J. Jonkman, C.M. Shapiro, T.J. Brown, et al., Frontiers in neuroscience, 2019. 13: p. 954-954. https://doi.org/10.3389/fnins.2019.00954
Poor sleep and adolescent obesity risk: a narrative review of potential mechanisms.
K.M. Duraccio, K.N. Krietsch, M.L. Chardon, T.R. Van Dyk, et al., Adolescent health, medicine and therapeutics, 2019. 10: p. 117-130. https://doi.org/10.2147/AHMT.S219594
Hunger hormone and sleep responses to the built-in blue-light filter on an electronic device: a pilot study.
M.W. Driller, G. Jacobson and L. Uiga, Sleep science (Sao Paulo, Brazil), 2019. 12(3): p. 171-177. https://doi.org/10.5935/1984-0063.20190074
2018
On-orbit sleep problems of astronauts and countermeasures.
B. Wu, Y. Wang, X. Wu, D. Liu, et al., Military Medical Research, 2018. 5(1): p. 17. https://doi.org/10.1186/s40779-018-0165-6
Acute alerting effects of light: A systematic literature review.
J.L.T. Souman, Angelica M.te Pas, Susan F.van Ee, RaymondVlaskamp, Björn N. S., Behavioural Brain Research, 2018. 337: p. 228-239. https://doi.org/10.1016/j.bbr.2017.09.016
Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review.
L.B. Samuelsson, D.H. Bovbjerg, K.A. Roecklein and M.H. Hall, Neurosci Biobehav Rev. , 2018. 84: p. 35-48. https://doi.org/10.1016/j.neubiorev.2017.10.011.
Overnight smartphone use: A new public health challenge? A novel study design based on high-resolution smartphone data.
N.H. Rod, A.S. Dissing, A. Clark, T.A. Gerds, et al., PloS one, 2018. 13(10): p. e0204811-e0204811. https://doi.org/10.1371/journal.pone.0204811
Does the iPad Night Shift mode reduce melatonin suppression?
R.P. Nagare, B.Figueiro, M. G., Lighting Research & Technology, 2018: p. 1477153517748189. https://doi.org/10.1177/1477153517748189
Lack of sleep is associated with internet use for leisure.
S.Y. Kim, Min-SuPark, BumjungKim, Jin-HwanChoi, Hyo Geun, PLOS ONE, 2018. 13(1): p. e0191713. https://doi.org/10.1371/journal.pone.0191713
LED Illumination – A Hazard to the Eye?
M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44. https://doi.org/10.1002/opph.201800029
Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.
A.S. Fisk, S.K.E. Tam, L.A. Brown, V.V. Vyazovskiy, et al., Frontiers in Neurology, 2018. 9: p. 56. https://doi.org/10.3389/fneur.2018.00056
An update on adolescent sleep: New evidence informing the perfect storm model.
S.J.W. Crowley, Amy R.Tarokh, LeilaCarskadon, Mary A., Journal of Adolescence, 2018. 67: p. 55-65. https://doi.org/10.1016/j.adolescence.2018.06.001
Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.
R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018. https://arxiv.org/abs/1806.04751
Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.
E.D.D. Chinoy, Jeanne F.Czeisler, Charles A., Physiological Reports, 2018. 6(10): p. e13692. https://doi.org/10.14814/phy2.13692
Change of blue light hazard and circadian effect of LED backlight displayer with color temperature and age.
Y. Chaopu, F. Wenqing, T. Jiancheng, Y. Fan, et al., Optics Express, 2018. 26(21): p. 27021-27032. https://doi.org/10.1364/OE.26.027021
2017
The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.
S.A. Rahman, M.A. St Hilaire and S.W. Lockley, Physiol Behav, 2017. 177: p. 221-229. https://doi.org/10.1016/j.physbeh.2017.05.002
Short and long-term health consequences of sleep disruption.
G. Medic, M. Wille and M.E. Hemels, Nature and science of sleep, 2017. 9: p. 151-161. https://doi.org/10.2147/NSS.S134864
Relationship between Mobile Phone Addiction and the Incidence of Poor and Short Sleep among Korean Adolescents: a Longitudinal Study of the Korean Children and Youth Panel Survey.
J.E. Lee, S.-I. Jang, Y.J. Ju, W. Kim, et al., J Korean Med Sci, 2017. 32(7): p. 1166-1172. http://synapse.koreamed.org/DOIx.php?id=10.3346%2Fjkms.2017.32.7.1166
The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature.
J.G. Lawrenson, C.C. Hull and L.E. Downie, Ophthalmic and Physiological Optics, 2017. 37(6): p. 644-654. https://doi.org/10.1111/opo.12406
Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.
A.L. Opperhuizen, D.J. Stenvers, R.D. Jansen, E. Foppen, et al., Diabetologia, 2017. 60(7): p. 1333-1343. https://doi.org/10.1007/s00125-017-4262-y
Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies.
M. Hatori, C. Gronfier, R.N. Van Gelder, P.S. Bernstein, et al., npj Aging and Mechanisms of Disease, 2017. 3(1): p. 9. https://doi.org/10.1038/s41514-017-0010-2
Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities.
A. Green, M. Cohen-Zion, A. Haim and Y. Dagan, Chronobiology International, 2017. 34(7): p. 855-865. https://doi.org/10.1080/07420528.2017.1324878
Disruption of Circadian Rhythms by Light During Day and Night.
M.G. Figueiro, Current sleep medicine reports, 2017. 3(2): p. 76-84. https://doi.org/10.1007/s40675-017-0069-0
2016
Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.
Y. Touitou, D. Touitou and A. Reinberg, Journal of Physiology-Paris, 2016. 110(4, Part B): p. 467-479. https://doi.org/10.1016/j.jphysparis.2017.05.001
Effects of blue light on the circadian system and eye physiology.
G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72. http://www.molvis.org/molvis/v22/61
Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.
G.D.M. Potter, D.J. Skene, J. Arendt, J.E. Cade, et al., Endocrine Reviews, 2016. 37(6): p. 584-608. https://doi.orf/10.1210/er.2016-1083
Aging-Related Circadian Disruption and Its Correction.
D.G. Gubin, T.V. Bolotnova, S.S. V, A.G. Naymushina, et al., in Treatment Options for Aging, SMGroup, Editor. 2016, SMGroup. http://www.smgebooks.com/treatment-options-for-aging/chapters/TOA-16-02.pdf
Relationship between Oxidative Stress, Circadian Rhythms, and AMD.
M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18. https://doi.org/10.1155/2016/7420637
2015
Light at night pollution of the internal clock, a public health issue.
Y. Touitou, Bull Acad Natl Med, 2015. 199(7): p. 1081-1098.
Analysis of circadian properties and healthy levels of blue light from smartphones at night.
J.H. Oh, H. Yoo, H.K. Park and Y.R. Do, Nature Scientific Reports, 2015. 5:11325. https://doi.org/10.1038/srep11325
Screen time and sleep among school-aged children and adolescents: a systematic literature review.
L. Hale and S. Guan, Sleep Med Rev, 2015. 21: p. 50-8. https://doi.org/10.1016/j.smrv.2014.07.007
Blue Light: A Blessing or a Curse?
C.C. Gomes and S. Preto, Procedia Manufacturing, 2015. 3: p. 4472-4479. https://doi.org/10.1016/j.promfg.2015.07.459
Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty.
S.J. Crowley, S.W. Cain, A.C. Burns, C. Acebo, et al., J Clin Endocrinol Metab, 2015. 100(4067-4073). https://doi.org/10.1210/jc.2015-2775
Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.
A.-M. Chang, D. Aeschbach, J.F. Duffy and C.A. Czeisler, Proceedings of the National Academy of Sciences, 2015. 112(4): p. 1232. http://www.pnas.org/content/112/4/1232.abstract
2014
Association between electronic media use and sleep habits: an eight-day follow-up study.
V. Kubiszewski, R. Fontaine, E. Rusch and E. Hazouard, International Journal of Adolescence and Youth, 2014. 19(3): p. 395-407. https://doi.org/10.1080/02673843.2012.751039
Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias.
T. Arora, E. Broglia, G.N. Thomas and S. Taheri, Sleep Med, 2014. 15(2): p. 240-7. https://doi.org/10.1016/j.sleep.2013.08.799
Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light.
S.A. Rahman, E.E. Flynn-Evans, D. Aeschbach, G.C. Brainard, et al., Sleep, 2014. 37(2): p. 271-281. https://doi.org/10.5665/sleep.3396
2013
Out of the Lab and into the Bathroom: Evening Short-Term Exposure to Conventional Light Suppresses Melatonin and Increases Alertness Perception.
A. Wahnschaffe, S. Haedel, A. Rodenbeck, C. Stoll, et al., International Journal of Molecular Sciences, 2013. 14(2): p. 2573-2589. https://doi.org/10.3390/ijms14022573
2012
Human responses to bright light of different durations.
A.-M. Chang, N. Santhi, M. St Hilaire, C. Gronfier, et al., The Journal of Physiology, 2012. 590(13): p. 3103-3112. https://doi.org/10.1113/jphysiol.2011.226555
2011
Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.
C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.
Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.
C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.
2010
Circadian light.
M.S. Rea, F.M. G., A. Bierman and J.D. Bullough, Journal of Circadian Rhythms, 2010. 8(1740-3391 (Electronic)). http://www.jcircadianrhythms.com/content/8/1/2
What’s in a Color? The Unique Human Health Effect of Blue Light.
D.C. Holzman, Environmental Health Perspectives, 2010. 118(1): p. A22-A27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831986/pdf/ehp-118-a22.pdf
Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.
J.J. Gooley, S.M. Rajaratnam, G.C. Brainard, R.E. Kronauer, et al., Sci Transl Med, 2010. 2(31): p. 31ra33. https://doi.org/10.1126/scitranslmed.3000741
The Effects of Red and Blue Lights on Circadian Variations in Cortisol, Alpha Amylase, and Melatonin.
M.G. Figueiro and M.S. Rea, International Journal of Endocrinology, 2010. 2010: p. 829351. https://doi.org/10.1155/2010/829351
2009
Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.
A. Lerchl, C. Schindler, K. Eichhorn, F. Kley, et al., Journal of Pineal Research, 2009. 47(2): p. 143-146. https://doi.org/10.1111/j.1600-079X.2009.00691.x
2008
Circadian photoreception: ageing and the eye’s important role in systemic health.
P.L. Turner and M.A. Mainster, The British journal of ophthalmology, 2008. 92(11): p. 1439-1444. https://doi.org/10.1136/bjo.2008.141747
Sensitivity of the human circadian system to short-wavelength (420-nm) light.
G.C. Brainard, D. Sliney, J.P. Hanifin, G. Glickman, et al., J Biol Rhythms, 2008. 23(5): p. 379-86. https://doi.org/10.1177/0748730408323089
2007
Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.
F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128. https://doi.org/10.1016/j.cub.2007.11.034
2002
Ocular input for human melatonin regulation: relevance to breast cancer.
G. Glickman, R. Levin and G.C. Brainard, Neuroendocrinology Letters, 2002. 23: p. 17-22. https://www.ncbi.nlm.nih.gov/pubmed/12163843
2001
An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans
K. Thapan, J. Arendt and D.J. Skene, The Journal of Physiology, 2001. 535(Pt 1): p. 261-267. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00261.x
Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor
G.C. Brainard, J.P. Hanifin, J.M. Greeson, B. Byrne, et al., The Journal of neuroscience : the official journal of the Society for Neuroscience, 2001. 21(16): p. 6405-6412. https://doi.org/10.1523/JNEUROSCI.21-16-06405.2001