Blue light-induced retinal damage: a brief review and a proposal for examining the hypothetical causal link between person digital device use and retinal injury.

M.R. Kozlowski, Medical Hypothesis, Discovery & Innovation in Optometry, 2021. 1(3): p. 129-134.


Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations.

J.A. Miralles de Imperial-Ollero, A. Gallego-Ortega, A. Ortín-Martínez, M.P. Villegas-Pérez, et al., Life, 2021. 11(11): p. 1137.


Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model.

H. Li, M. Zhang, D. Wang, G. Dong, et al., Biomed Res Int, 2021. 2021: p. 3236892.






Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology

I. Jaadane, G. Villalpando Rodriguez, P. Boulenguez, S. Carré, et al., Scientific Reports, 2020. 10(1): p. 6733-6733.


Blue light-triggered photochemistry and cytotoxicity of retinal.

K. Ratnayake, J.L. Payton, M.E. Meger, N.H. Godage, et al., Cell Signal, 2020. 69: p. 109547.


Comparison of ophthalmic toxicity of light-emitting diode and organic light-emitting diode light sources

I. Jun, S.J. Han, H.-S. Shin, J. Kim, et al., Scientific Reports, 2020. 10(1): p. 11582-11582.


Mechanisms of blue light-induced eye hazard and protective measures: a review.

X. Ouyang, J. Yang, Z. Hong, Y. Wu, et al., Biomedicine & Pharmacotherapy, 2020. 130: p. 110577.


Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration.

Y. Ozawa, Redox Biology, 2020. 37: p. 101779.


Photochemical Retinopathy induced by blue light emitted from a light-emitting diode Face Mask: A case report and literature review.

T.G. Kim, J. Chung, J. Han, K.H. Jin, et al., Medicine, 2020. 99(24): p. e20568-e20568.


Whole transcriptome analysis on blue light-induced eye damage.

X.-L. Ouyang, B.-Y. Chen, Y.-F. Xie, Y.-D. Wu, et al., International journal of ophthalmology, 2020. 13(8): p. 1210-1222.






Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina.

J.-X. Tao, W.-C. Zhou and X.-G. Zhu, Oxidative medicine and cellular longevity, 2019. 2019: p. 6435364-6435364.


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8.


Blue light exposure in vitro causes toxicity to trigeminal neurons and glia through increased superoxide and hydrogen peroxide generation.

V. Marek, A. Potey, A. Réaux-Le-Goazigo, E. Reboussin, et al., Free Radical Biology and Medicine, 2019. 131: p. 27-39.


The Protective Effects of Blue Light-Blocking Films With Different Shielding Rates: A Rat Model Study.

X. Liu, Q. Zhou, H. Lin, J. Wu, et al., Trans Vis Sci Tech. , 2019. 8(3): p. 1-11.


Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage.

C.-W. Lin, C.-M. Yang and C.-H. Yang, International journal of molecular sciences, 2019. 20(9): p. 2318.


Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats.

C.-H. Lin, M.-R. Wu, W.-J. Huang, D.S.-L. Chow, et al., International journal of molecular sciences, 2019. 20(7): p. 1799.


Photic generation of 11-cis-retinal in bovine retinal pigment epithelium.

J. Zhang, E.H. Choi, A. Tworak, D. Salom, et al., Journal of Biological Chemistry, 2019. 294(50): p. 19137-19154.


Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD).

K. Kaarniranta, E. Pawlowska, J. Szczepanska, A. Jablkowska, et al., International Journal of Molecular Sciences, 2019. 20(10).


Suspected macular light damage caused by excessive use of smartphone.

X.-D. Huang, X. Gao, L. Gao, G. Ma, et al., Chinese medical journal, 2019. 132(16): p. 2013-2014.


Retinal Neuron Is More Sensitive to Blue Light-Induced Damage than Glia Cell Due to DNA Double-Strand Breaks.

P. Chen, Z. Lai, Y. Wu, L. Xu, et al., Cells, 2019. 8(2073-4409 (Print)).


Retinal Neuron Is More Sensitive to Blue Light-Induced Damage than Glia Cell Due to DNA Double-Strand Breaks. 

P. Chen, Z. Lai, Y. Wu, L. Xu, et al., Cells, 2019. 8(2073-4409 (Print)).


Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light.

M.M. Benedetto and M.A. Contin, Frontiers in Cellular Neuroscience, 2019. 13: p. 139.





An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration.

A. Moreno-García, A. Kun, O. Calero, M. Medina, et al., Frontiers in Neuroscience, 2018. 12(464).


Mitochondrial Fission Is Required for Blue Light-Induced Apoptosis and Mitophagy in Retinal Neuronal R28 Cells.

J.-Y. Li, K. Zhang, D. Xu, W.-T. Zhou, et al., Frontiers in Molecular Neuroscience, 2018. 11: p. 432.


Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

J. Vicente-Tejedor, M. Marchena, L. Ramírez, D. García-Ayuso, et al., PLOS ONE, 2018. 13(3): p. e0194218.


What We Know About the Epidemiology of Dry Eye Disease in Japan Epidemiology of Dry Eye Disease in Japan.

M. Uchino, Investigative Ophthalmology & Visual Science, 2018. 59(14): p. DES1-DES6.


Digital eye strain: prevalence, measurement and amelioration.

A.L.W. Sheppard, James S., BMJ Open Ophthalmology, 2018. 3(1).


Blue light excited retinal intercepts cellular signaling.

K. Ratnayake, John L.Lakmal, O. HarshanaKarunarathne, Ajith, Scientific Reports, 2018. 8(1): p. 10207.


Blue Light Hazard: are exposure limit values protective enough for newborn infants?

S. Point, Radioprotection, 2018. 53(3): p. 219-224.


Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells.

M. Marie, K. Bigot, C. Angebault, C. Barrau, et al., Cell Death & Disease, 2018. 9(3): p. 287-287.


Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions.

V. Marek, S. Mélik-Parsadaniantz, T. Villette, F. Montoya, et al., Free Radical Biology and Medicine, 2018. 126: p. 27-40.


LED Illumination – A Hazard to the Eye?

M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44.


Warding off the blues.

B. Hefner, Review of Optometry, 2018. 155(6): p. 71-78.


Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.

R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018.


Ocular Tolerance of Contemporary Electronic Display Devices.

A.J.Y. Clark, P.Khaderi, K. R.Moshfeghi, A. A., Ophthalmic Surg Lasers Imaging Retina, 2018. 49(5): p. 346-354.





Light-emitting-diode induced retinal damage and its wavelength dependency in vivo.

Y.-M. Shang, G.-S. Wang, D.H. Sliney, C.-H. Yang, et al., International journal of ophthalmology, 2017. 10(2): p. 191-202.

The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

E. Ooe, K. Tsuruma, Y. Kuse, S. Kobayashi, et al., Molecular Vision, 2017. 23: p. 52-59.


Blue light effect on retinal pigment epithelial cells by display devices

J. Moon, J. Yun, Y.D. Yoon, S.-I. Park, et al.Integrative Biology, 2017. 9(5): p. 436-443.


Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo.

I. Jaadane, G.E. Villalpando Rodriguez, P. Boulenguez, S. Chahory, et al., Journal of Cellular and Molecular Medicine, 2017. 21(12): p. 3453-3466.


Editor’s Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis.

H.-W. Cheng, M.-R. Wu, S.-H. Huang, C.-H. Lin, et al., Toxicological Sciences, 2017. 157(1): p. 196-210.


Non-Visual Photopigments Effects of Constant Light-Emitting Diode Light Exposure on the Inner Retina of Wistar Rats.

M.M. Benedetto, M.E. Guido and M.A. Contin, Frontiers in Neurology, 2017. 8(417).


Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone).

T. Masuda, M. Shimazawa and H. Hara, Oxidative medicine and cellular longevity, 2017. 2017: p. 9208489-9208489.



How safe is the light during ophthalmic diagnosis and surgery.

M. Wolffe, Eye (London, England), 2016. 30(2): p. 186-188.


Light damage to the retina: an historical approach.

D. van Norren and J.J. Vos, Eye (London, England), 2016. 30(2): p. 169-172.


Effects of blue light on the circadian system and eye physiology.

G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72.


Retinal Light Damage Through Prolonged Visible Light Exposure.

T. Reiter, EC Ophthalmology, 2016. 4.3: p. 517-521.


Exploring Clinical Evidence and the Benefits of Filtering Out Harmful Light

F. Loperfido and A. Marchese, in Points de Vue – International Review of Ophthalmic Optics. 2016, Essilor International.


Relationship between Oxidative Stress, Circadian Rhythms, and AMD.

M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18.


Light pollution: the possible consequences of excessive illumination on retina.

M.A. Contin, M.M. Benedetto, M.L. Quinteros-Quintana and M.E. Guido, Eye (Lond). , 2016. 30(2): p. 255–263.





Retinal damage induced by commercial light emitting diodes (LEDs).

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, et al., Free Radical Biology and Medicine, 2015. 84: p. 373-384.


Blue light-induced retinal lesions, intraretinal vascular leakage and edema formation in the all-cone mouse retina.

P.B. Geiger, M; Grimm, C; Samardzija, M, Cell Death & Disease, 2015. 6(11): p. e1985.


The 11-cis Retinal Origins of Lipofuscin in the Retina.

L. Adler, N.P. Boyer, C. Chen, Z. Ablonczy, et al., Progress in Molecular Biology and Translational Science, 2015. 134: p. e1-e12.





What optometrists need to know about IpRGCs and why.

H. RE., Optom Vis Perf 2014. 2(4): p. 364-374.


The effect of visual blue light on mitochondrial function associated with retinal ganglions cells.

N.N. Osborne, C. Nunez-Alvarez and S. Del Olmo-Aguado, Experimental Eye Research, 2014. 128: p. 8-14.


Hidden Blue Hazard? LED Lighting and Retinal Damage in Rats.

T. Lougheed, Environmental Health Perspectives, 2014. 122(3): p. A81-A81.


Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa, et al., Scientific Reports, 2014. 4: p. 5223.


Blue Light and Eye Damage.

G.W. Good. 2014, American Optometric Association.





Bad Blue, Good Blue, Eye and Vision

T. Villette, Points de Vue – International Review of Ophthalmic Optics online publication, 2013. 68: p. 7-8.


Macular pigment and its contribution to vision.

E. Loskutova, J. Nolan, A. Howard and S. Beatty, Nutrients, 2013. 5(6): p. 1962-1969.


Photoprotective Effects of Blue Light Absorbing Filter against LED Light Exposure on Human Retinal Pigment Epithelial Cells In Vitro.

E. Chamorro, S. Carralero, C. Bonnin-Arias, M. Pérez-Carrasco, et al., J Carcinog Mutagen, 2013. S6: p. 8.


Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

E. Chamorro, C. Bonnin-Arias, M.J. Perez-Carrasco, J. Munoz de Luna, et al., Photochem Photobiol, 2013. 89(2): p. 468-73.


Phototoxic Action Spectrum on a Retinal Pigment Epithelium Model of Age-Related Macular Degeneration Exposed to Sunlight Normalized Conditions.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, et al., PLOS ONE, 2013. 8(8): p. e71398.


Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals.

M.A. Contín, M.M. Arietti, M.M. Benedetto, C. Bussi, et al., Molecular vision, 2013. 19: p. 1614-1625.





The susceptibility of the retina to photochemical damage from visible light.

J.J. Hunter, J.I. Morgan, W.H. Merigan, D.H. Sliney, et al., Prog Retin Eye Res, 2012. 31(1): p. 28-42.


Light Might Directly Affect Retinal Ganglion Cell Mitochondria to Potentially Influence Function.

S. del Olmo-Aguado, A.G. Manso and N.N. Osborne, Photochemistry and Photobiology, 2012. 88(6): p. 1346-1355.


Personal risks posed by LEDs used in everyday devices.

E. Chamorro, C. Bonnin, L.L. Lobato-Rincón, J.J. Navarro-Valls, et al., Seguridad y Medio Ambiente – N128, 2012. 32(N128): p. 1-7.


Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure: their Origin is 11-cis-retinal.

N.P. Boyer, D. Higbee, M.B. Currin, L.R. Blakeley, et al., J. Biol. Chem., 2012. 287(26): p. 22276-22286.





Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?

F. Behar-Cohen, C. Martinsons, F. Viénot, G. Zissis, et al., Progress in Retinal and Eye Research, 2011. 30(4): p. 239-257.


Light filtering in a retinal pigment epithelial cell culture model

J. Zhou and J.R. Sparrow, Optometry and vision science : official publication of the American Academy of Optometry, 2011. 88(6): p. 759-765.





Retinal light toxicity.

P.N. Youssef, N. Sheibani and D.M. Albert, Eye, 2010. 25: p. 1.


Retinal light damage: Mechanisms and protection.

D.T. Organisciak and D.K. Vaughan, Progress in Retinal and Eye Research, 2010. 29(2): p. 113-134.





Light-Induced Damage to the Retina.

M. Rozanowska, B. Rozanowski and M. Boulton. 2009  [cited Access 2009; Available from:]


The influence of sublethal blue light exposure on human RPE cells.

C. Roehlecke, A. Schaller, L. Knels and R.H.W. Funk, Molecular vision, 2009. 15: p. 1929-1938.




Macular pigment in the human retina: histological evaluation of localization and distribution.

M. Trieschmann, F.J.G.M. van Kuijk, R. Alexander, P. Hermans, et al., Eye, 2008. 22(1): p. 132-137.





Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.

F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128.





Photochemical Damage of the Retina.

J. Wu, S. Seregard and P.V. Algvere, Survey of Ophthalmology, 2006. 51(5): p. 461-481.


Blocking the blue.

P. Hawse, The British journal of ophthalmology, 2006. 90(8): p. 939-940.


Age-related maculopathy and the impact of blue light hazard.

P.V. Algvere, J. Marshall and S. Seregard, Acta Ophthalmologica Scandinavica, 2006. 84(1): p. 4-15.





Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.

A. Wenzel, C. Grimm, M. Samardzija and C.E. Remé, Progress in Retinal and Eye Research, 2005. 24(2): p. 275-306.


Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP)

D. Sliney, D. Aron-Rosa, F. DeLori, F. Fankhauser, et al., Applied Optics, 2005. 44(11): p. 2162-76. 10.1364/ao.44.002162


Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells.

B.F. Godley, F.A. Shamsi, F.-Q. Liang, S.G. Jarrett, et al., 2005. 280(22): p. 21061-21066.





A model of spectral filtering to reduce photochemical damage in age-related macular degeneration

S.M. Meyers, M.A. Ostrovsky and R.F. Bonner, Trans Am Ophthalmol Soc, 2004. 102: p. 83-95.





Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects.

F.o.C. Delori, D.G. Goger and C.K. Dorey, Investigative Ophthalmology & Visual Science, 2001. 42(8): p. 1855-1866.


Retinal photodamage.

M. Boulton, M. Różanowska and B. Różanowski, Journal of Photochemistry and Photobiology B: Biology, 2001. 64(2): p. 144-161.





The Lipofuscin Fluorophore A2E Mediates Blue Light– Induced Damage to Retinal Pigmented Epithelial Cells.

J.R. Sparrow, K. Nakanishi and C.A. Parish, Invest Ophthalmol Vis Sci. , 2000. 41: p. 1981–1989.


Blue Light’s Effects on Rhodopsin: Photoreversal of Bleaching in Living Rat Eyes.

C. Grimm, C.E. Remé, P.O. Rol and T.P. Williams, Investigative Ophthalmology & Visual Science, 2000. 41(12): p. 3984-3990.





Blue light induced apoptosis in rat retina.

J. Wu, S. Seregard, B. Spångberg, M. Oskarsson, et al., Eye, 1999. 13: p. 577.





Light damage revisited: converging evidence, diverging views?

C. Remé, J. Reinboth, M. Clausen and F. Hafezi, Graefe’s Archive for Clinical and Experimental Ophthalmology, 1996. 234(1): p. 2-11.





Quantifying retinal irradiance levels in light damage experiments.

D.H. Sliney, Current Eye Research, 1984. 3(1): p. 175-179.





Additivity and repair of actinic retinal lesions.

G.A. Griess and M.F. Blankenstein, Investigative Ophthalmology & Visual Science, 1981. 20(6): p. 803-807.





The nature of retinal radiation damage: Dependence on wavelength, power level and exposure time.

W.T. Ham, J.J. Ruffolo, H.A. Mueller and D. Guerry, Vision Research, 1980. 20(12): p. 1105-1111.


Retinal light exposure from ophthalmoscopes, slit lamps, and overhead surgical lamps. An analysis of potential hazards.

J.L. Calkins and B.F. Hochheimer, Investigative Ophthalmology & Visual Science, 1980. 19(9): p. 1009-1015.





Sensitivity of the retina to radiation damage as a function of wavelength.

W.T. Ham, H.A. Mueller, J.J. Ruffolo and A.M. Clarke, Photochemistry and Photobiology, 1979. 29: p. 735-743.

Scroll to Top