Retina

 

2021


Blue light-induced retinal damage: a brief review and a proposal for examining the hypothetical causal link between person digital device use and retinal injury.

M.R. Kozlowski, Medical Hypothesis, Discovery & Innovation in Optometry, 2021. 1(3): p. 129-134. https://doi.org/10.51329/mehdioptometry118

 


Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations.

J.A. Miralles de Imperial-Ollero, A. Gallego-Ortega, A. Ortín-Martínez, M.P. Villegas-Pérez, et al., Life, 2021. 11(11): p. 1137. https://www.mdpi.com/2075-1729/11/11/1137

 


Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model.

H. Li, M. Zhang, D. Wang, G. Dong, et al., Biomed Res Int, 2021. 2021: p. 3236892. https://doi.org/10.1155/2021/3236892

 


 

 

 

2020


Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology

I. Jaadane, G. Villalpando Rodriguez, P. Boulenguez, S. Carré, et al., Scientific Reports, 2020. 10(1): p. 6733-6733. https://doi.org/10.1038/s41598-020-63442-5

 


Blue light-triggered photochemistry and cytotoxicity of retinal.

K. Ratnayake, J.L. Payton, M.E. Meger, N.H. Godage, et al., Cell Signal, 2020. 69: p. 109547. https://doi.org/10.1016/j.cellsig.2020.109547

 


Comparison of ophthalmic toxicity of light-emitting diode and organic light-emitting diode light sources

I. Jun, S.J. Han, H.-S. Shin, J. Kim, et al., Scientific Reports, 2020. 10(1): p. 11582-11582. https://doi.org/10.1038/s41598-020-68565-3

 


Mechanisms of blue light-induced eye hazard and protective measures: a review.

X. Ouyang, J. Yang, Z. Hong, Y. Wu, et al., Biomedicine & Pharmacotherapy, 2020. 130: p. 110577. https://doi.org/10.1016/j.biopha.2020.110577

 


Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration.

Y. Ozawa, Redox Biology, 2020. 37: p. 101779. https://doi.org/10.1016/j.redox.2020.101779

 


Photochemical Retinopathy induced by blue light emitted from a light-emitting diode Face Mask: A case report and literature review.

T.G. Kim, J. Chung, J. Han, K.H. Jin, et al., Medicine, 2020. 99(24): p. e20568-e20568. https://doi.org/10.1097/MD.0000000000020568

 


Whole transcriptome analysis on blue light-induced eye damage.

X.-L. Ouyang, B.-Y. Chen, Y.-F. Xie, Y.-D. Wu, et al., International journal of ophthalmology, 2020. 13(8): p. 1210-1222. https://doi.org/10.18240/ijo.2020.08.06

 


 

 

 

2019


Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina.

J.-X. Tao, W.-C. Zhou and X.-G. Zhu, Oxidative medicine and cellular longevity, 2019. 2019: p. 6435364-6435364. https://doi.org/10.1155/2019/6435364

 


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8. https://doi.org/10.1038/s41514-019-0038-6

 


Blue light exposure in vitro causes toxicity to trigeminal neurons and glia through increased superoxide and hydrogen peroxide generation.

V. Marek, A. Potey, A. Réaux-Le-Goazigo, E. Reboussin, et al., Free Radical Biology and Medicine, 2019. 131: p. 27-39. https://doi.org/10.1016/j.freeradbiomed.2018.11.029

 


The Protective Effects of Blue Light-Blocking Films With Different Shielding Rates: A Rat Model Study.

X. Liu, Q. Zhou, H. Lin, J. Wu, et al., Trans Vis Sci Tech. , 2019. 8(3): p. 1-11. https://doi.org/10.1167/tvst.8.3.19

 


Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage.

C.-W. Lin, C.-M. Yang and C.-H. Yang, International journal of molecular sciences, 2019. 20(9): p. 2318. https://doi.org/10.3390/ijms20092318

 


Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats.

C.-H. Lin, M.-R. Wu, W.-J. Huang, D.S.-L. Chow, et al., International journal of molecular sciences, 2019. 20(7): p. 1799. https://doi.org/10.3390/ijms20071799

 


Photic generation of 11-cis-retinal in bovine retinal pigment epithelium.

J. Zhang, E.H. Choi, A. Tworak, D. Salom, et al., Journal of Biological Chemistry, 2019. 294(50): p. 19137-19154. https://doi.org/10.1074/jbc.RA119.011169

 


Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD).

K. Kaarniranta, E. Pawlowska, J. Szczepanska, A. Jablkowska, et al., International Journal of Molecular Sciences, 2019. 20(10). https://doi.org/10.3390/ijms20102374

 


Suspected macular light damage caused by excessive use of smartphone.

X.-D. Huang, X. Gao, L. Gao, G. Ma, et al., Chinese medical journal, 2019. 132(16): p. 2013-2014. https://doi.org/10.1097/CM9.0000000000000379

 


Retinal Neuron Is More Sensitive to Blue Light-Induced Damage than Glia Cell Due to DNA Double-Strand Breaks.

P. Chen, Z. Lai, Y. Wu, L. Xu, et al., Cells, 2019. 8(2073-4409 (Print)). https://doi.org/10.3390/cells8010068

 


Retinal Neuron Is More Sensitive to Blue Light-Induced Damage than Glia Cell Due to DNA Double-Strand Breaks. 

P. Chen, Z. Lai, Y. Wu, L. Xu, et al., Cells, 2019. 8(2073-4409 (Print)). https://doi.org/10.3390/cells8010068

 


Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light.

M.M. Benedetto and M.A. Contin, Frontiers in Cellular Neuroscience, 2019. 13: p. 139. https://doi.org/10.3389/fncel.2019.00139

 


 

 

2018


An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration.

A. Moreno-García, A. Kun, O. Calero, M. Medina, et al., Frontiers in Neuroscience, 2018. 12(464). https://doi.org/10.3389/fnins.2018.00464

 


Mitochondrial Fission Is Required for Blue Light-Induced Apoptosis and Mitophagy in Retinal Neuronal R28 Cells.

J.-Y. Li, K. Zhang, D. Xu, W.-T. Zhou, et al., Frontiers in Molecular Neuroscience, 2018. 11: p. 432. https://www.frontiersin.org/article/10.3389/fnmol.2018.00432

 


Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

J. Vicente-Tejedor, M. Marchena, L. Ramírez, D. García-Ayuso, et al., PLOS ONE, 2018. 13(3): p. e0194218. https://doi.org/10.1371/journal.pone.0194218

 


What We Know About the Epidemiology of Dry Eye Disease in Japan Epidemiology of Dry Eye Disease in Japan.

M. Uchino, Investigative Ophthalmology & Visual Science, 2018. 59(14): p. DES1-DES6. https://doi.org/10.1167/iovs.17-23491

 


Digital eye strain: prevalence, measurement and amelioration.

A.L.W. Sheppard, James S., BMJ Open Ophthalmology, 2018. 3(1). http://bmjophth.bmj.com/content/3/1/e000146.abstract

 


Blue light excited retinal intercepts cellular signaling.

K. Ratnayake, John L.Lakmal, O. HarshanaKarunarathne, Ajith, Scientific Reports, 2018. 8(1): p. 10207. https://doi.org/10.1038/s41598-018-28254-8

 


Blue Light Hazard: are exposure limit values protective enough for newborn infants?

S. Point, Radioprotection, 2018. 53(3): p. 219-224. https://doi.org/10.1051/radiopro/2018025

 


Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells.

M. Marie, K. Bigot, C. Angebault, C. Barrau, et al., Cell Death & Disease, 2018. 9(3): p. 287-287. https://doi.org/10.1038/s41419-018-0331-5

 


Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions.

V. Marek, S. Mélik-Parsadaniantz, T. Villette, F. Montoya, et al., Free Radical Biology and Medicine, 2018. 126: p. 27-40. https://doi.org/10.1016/j.freeradbiomed.2018.07.012

 


LED Illumination – A Hazard to the Eye?

M. Hessling, P.S. Koelbl and C. Lingenfelder, Optik & Photonik, 2018. 13(4): p. 40-44. https://doi.org/10.1002/opph.201800029

 


Warding off the blues.

B. Hefner, Review of Optometry, 2018. 155(6): p. 71-78. https://www.reviewsce.com/ce/warding-off-the-blues

 


Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters.

R. Comparetto and A. Farini, arXiv:1806.04751 [q-bio.OT], 2018. https://arxiv.org/abs/1806.04751

 


Ocular Tolerance of Contemporary Electronic Display Devices.

A.J.Y. Clark, P.Khaderi, K. R.Moshfeghi, A. A., Ophthalmic Surg Lasers Imaging Retina, 2018. 49(5): p. 346-354. https://doi.org/10.3928/23258160-20180501-08

 


 

 

2017


Light-emitting-diode induced retinal damage and its wavelength dependency in vivo.

Y.-M. Shang, G.-S. Wang, D.H. Sliney, C.-H. Yang, et al., International journal of ophthalmology, 2017. 10(2): p. 191-202. https://doi.org/10.18240/ijo.2017.02.03


The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

E. Ooe, K. Tsuruma, Y. Kuse, S. Kobayashi, et al., Molecular Vision, 2017. 23: p. 52-59. https://pubmed.ncbi.nlm.nih.gov/28331281

 


Blue light effect on retinal pigment epithelial cells by display devices

J. Moon, J. Yun, Y.D. Yoon, S.-I. Park, et al.Integrative Biology, 2017. 9(5): p. 436-443. https://doi.org/10.1039/c7ib00032d

 


Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo.

I. Jaadane, G.E. Villalpando Rodriguez, P. Boulenguez, S. Chahory, et al., Journal of Cellular and Molecular Medicine, 2017. 21(12): p. 3453-3466. https://doi.org/10.1111/jcmm.13255

 


Editor’s Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis.

H.-W. Cheng, M.-R. Wu, S.-H. Huang, C.-H. Lin, et al., Toxicological Sciences, 2017. 157(1): p. 196-210. https://doi.org/10.1093/toxsci/kfx030

 


Non-Visual Photopigments Effects of Constant Light-Emitting Diode Light Exposure on the Inner Retina of Wistar Rats.

M.M. Benedetto, M.E. Guido and M.A. Contin, Frontiers in Neurology, 2017. 8(417). https://doi.org/10.3389/fneur.2017.00417

 


Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone).

T. Masuda, M. Shimazawa and H. Hara, Oxidative medicine and cellular longevity, 2017. 2017: p. 9208489-9208489. https://doi.org/10.1155/2017/9208489

 


2016


How safe is the light during ophthalmic diagnosis and surgery.

M. Wolffe, Eye (London, England), 2016. 30(2): p. 186-188. https://doi.org/10.1038/eye.2015.247

 


Light damage to the retina: an historical approach.

D. van Norren and J.J. Vos, Eye (London, England), 2016. 30(2): p. 169-172. https://doi.org/10.1038/eye.2015.218

 


Effects of blue light on the circadian system and eye physiology.

G. Tosini, I. Ferguson and K. Tsubota, Molecular Vision 2016. 22(2157-2518): p. 61-72. http://www.molvis.org/molvis/v22/61

 


Retinal Light Damage Through Prolonged Visible Light Exposure.

T. Reiter, EC Ophthalmology, 2016. 4.3: p. 517-521. https://www.ecronicon.com/ecop/pdf/ECOP-04-000091.pdf

 


Exploring Clinical Evidence and the Benefits of Filtering Out Harmful Light

F. Loperfido and A. Marchese, in Points de Vue – International Review of Ophthalmic Optics. 2016, Essilor International. www.pointsdevue.com

 


Relationship between Oxidative Stress, Circadian Rhythms, and AMD.

M.L. Fanjul-Moles and G.O. Lopez-Riquelme, Oxidative Medicine and Cellular Longevity, 2016. 2016: p. 18. https://doi.org/10.1155/2016/7420637

 


Light pollution: the possible consequences of excessive illumination on retina.

M.A. Contin, M.M. Benedetto, M.L. Quinteros-Quintana and M.E. Guido, Eye (Lond). , 2016. 30(2): p. 255–263. https://doi.org/10.1038/eye.2015.221

 


 

 

2015


Retinal damage induced by commercial light emitting diodes (LEDs).

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, et al., Free Radical Biology and Medicine, 2015. 84: p. 373-384. https://doi.org/10.1016/j.freeradbiomed.2015.03.034

 


Blue light-induced retinal lesions, intraretinal vascular leakage and edema formation in the all-cone mouse retina.

P.B. Geiger, M; Grimm, C; Samardzija, M, Cell Death & Disease, 2015. 6(11): p. e1985. https://doi.org/10.1038/cddis.2015.333

 


The 11-cis Retinal Origins of Lipofuscin in the Retina.

L. Adler, N.P. Boyer, C. Chen, Z. Ablonczy, et al., Progress in Molecular Biology and Translational Science, 2015. 134: p. e1-e12. https://doi.org/10.1016/bs.pmbts.2015.07.022

 


 

 

2014


What optometrists need to know about IpRGCs and why.

H. RE., Optom Vis Perf 2014. 2(4): p. 364-374. https://www.niwotvision.com/articles/IpRGC-article.pdf

 


The effect of visual blue light on mitochondrial function associated with retinal ganglions cells.

N.N. Osborne, C. Nunez-Alvarez and S. Del Olmo-Aguado, Experimental Eye Research, 2014. 128: p. 8-14. http://dx.doi.org/10.1016/j.exer.2014.08.012

 


Hidden Blue Hazard? LED Lighting and Retinal Damage in Rats.

T. Lougheed, Environmental Health Perspectives, 2014. 122(3): p. A81-A81. https://doi.org/10.1289/ehp.122-A81

 


Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa, et al., Scientific Reports, 2014. 4: p. 5223. https://doi.org/10.1038/srep05223

 


Blue Light and Eye Damage.

G.W. Good. 2014, American Optometric Association. https://www.aoa.org/Documents/CRG/Blue%20Light%20and%20Eye%20Damage.pdf

 


 

 

2013


Bad Blue, Good Blue, Eye and Vision

T. Villette, Points de Vue – International Review of Ophthalmic Optics online publication, 2013. 68: p. 7-8. www.pointsdevue.com

 


Macular pigment and its contribution to vision.

E. Loskutova, J. Nolan, A. Howard and S. Beatty, Nutrients, 2013. 5(6): p. 1962-1969. https://doi.org/10.3390/nu5061962

 


Photoprotective Effects of Blue Light Absorbing Filter against LED Light Exposure on Human Retinal Pigment Epithelial Cells In Vitro.

E. Chamorro, S. Carralero, C. Bonnin-Arias, M. Pérez-Carrasco, et al., J Carcinog Mutagen, 2013. S6: p. 8. https://dx.doi.org/10.4172/2157-2518.S6-008

 


Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

E. Chamorro, C. Bonnin-Arias, M.J. Perez-Carrasco, J. Munoz de Luna, et al., Photochem Photobiol, 2013. 89(2): p. 468-73. https://doi.org/10.1111/j.1751-1097.2012.01237.x

 


Phototoxic Action Spectrum on a Retinal Pigment Epithelium Model of Age-Related Macular Degeneration Exposed to Sunlight Normalized Conditions.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, et al., PLOS ONE, 2013. 8(8): p. e71398. https://doi.org/10.1371/journal.pone.0071398

 


Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals.

M.A. Contín, M.M. Arietti, M.M. Benedetto, C. Bussi, et al., Molecular vision, 2013. 19: p. 1614-1625. https://pubmed.ncbi.nlm.nih.gov/23901245

 


 

 

2012


The susceptibility of the retina to photochemical damage from visible light.

J.J. Hunter, J.I. Morgan, W.H. Merigan, D.H. Sliney, et al., Prog Retin Eye Res, 2012. 31(1): p. 28-42. https://doi.org/10.1016/j.preteyeres.2011.11.001

 


Light Might Directly Affect Retinal Ganglion Cell Mitochondria to Potentially Influence Function.

S. del Olmo-Aguado, A.G. Manso and N.N. Osborne, Photochemistry and Photobiology, 2012. 88(6): p. 1346-1355. https://doi.org/10.1111/j.1751-1097.2012.01120.x

 


Personal risks posed by LEDs used in everyday devices.

E. Chamorro, C. Bonnin, L.L. Lobato-Rincón, J.J. Navarro-Valls, et al., Seguridad y Medio Ambiente – N128, 2012. 32(N128): p. 1-7. http://www.mapfre.com/fundacion/html/revistas/seguridad/n128/en/article3.html

 


Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure: their Origin is 11-cis-retinal.

N.P. Boyer, D. Higbee, M.B. Currin, L.R. Blakeley, et al., J. Biol. Chem., 2012. 287(26): p. 22276-22286. https://doi.org/10.1074/jbc.M111.329235

 


 

 

2011


Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?

F. Behar-Cohen, C. Martinsons, F. Viénot, G. Zissis, et al., Progress in Retinal and Eye Research, 2011. 30(4): p. 239-257. https://doi.org/10.1016/j.preteyeres.2011.04.002

 


Light filtering in a retinal pigment epithelial cell culture model

J. Zhou and J.R. Sparrow, Optometry and vision science : official publication of the American Academy of Optometry, 2011. 88(6): p. 759-765. https://doi.org/10.1097/OPX.0b013e3182158cdd

 


 

 

2010


Retinal light toxicity.

P.N. Youssef, N. Sheibani and D.M. Albert, Eye, 2010. 25: p. 1. https://doi.org/10.1038/eye.2010.149

 


Retinal light damage: Mechanisms and protection.

D.T. Organisciak and D.K. Vaughan, Progress in Retinal and Eye Research, 2010. 29(2): p. 113-134. https://doi.org/10.1016/j.preteyeres.2009.11.004

 


 

 

2009


Light-Induced Damage to the Retina.

M. Rozanowska, B. Rozanowski and M. Boulton. 2009  [cited Access 2009; Available from:  http://photobiology.info/Rozanowska.html.]

 


The influence of sublethal blue light exposure on human RPE cells.

C. Roehlecke, A. Schaller, L. Knels and R.H.W. Funk, Molecular vision, 2009. 15: p. 1929-1938. https://www.ncbi.nlm.nih.gov/pubmed/19784391

 


 

2008


Macular pigment in the human retina: histological evaluation of localization and distribution.

M. Trieschmann, F.J.G.M. van Kuijk, R. Alexander, P. Hermans, et al., Eye, 2008. 22(1): p. 132-137. https://doi.org/10.1038/sj.eye.6702780

 


 

 

2007


Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina.

F.H. Zaidi, J.T. Hull, Stuart N. Peirson, K. Wulff, et al., Current Biology, 2007. 17(24): p. 2122-2128. https://doi.org/10.1016/j.cub.2007.11.034

 


 

 

2006


Photochemical Damage of the Retina.

J. Wu, S. Seregard and P.V. Algvere, Survey of Ophthalmology, 2006. 51(5): p. 461-481. https://doi.org/10.1016/j.survophthal.2006.06.009

 


Blocking the blue.

P. Hawse, The British journal of ophthalmology, 2006. 90(8): p. 939-940. https://doi.org/10.1136/bjo.2006.095653

 


Age-related maculopathy and the impact of blue light hazard.

P.V. Algvere, J. Marshall and S. Seregard, Acta Ophthalmologica Scandinavica, 2006. 84(1): p. 4-15. https://doi.org/10.1111/j.1600-0420.2005.00627.x

 


 

 

2005


Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.

A. Wenzel, C. Grimm, M. Samardzija and C.E. Remé, Progress in Retinal and Eye Research, 2005. 24(2): p. 275-306. https://doi.org/10.1016/j.preteyeres.2004.08.002

 


Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP)

D. Sliney, D. Aron-Rosa, F. DeLori, F. Fankhauser, et al., Applied Optics, 2005. 44(11): p. 2162-76. 10.1364/ao.44.002162

 


Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells.

B.F. Godley, F.A. Shamsi, F.-Q. Liang, S.G. Jarrett, et al., 2005. 280(22): p. 21061-21066. https://doi.org/10.1074/jbc.M502194200

 


 

 

2004


A model of spectral filtering to reduce photochemical damage in age-related macular degeneration

S.M. Meyers, M.A. Ostrovsky and R.F. Bonner, Trans Am Ophthalmol Soc, 2004. 102: p. 83-95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280090/

 


 

 

2001


Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects.

F.o.C. Delori, D.G. Goger and C.K. Dorey, Investigative Ophthalmology & Visual Science, 2001. 42(8): p. 1855-1866. https://iovs.arvojournals.org/article.aspx?articleid=2200004

 


Retinal photodamage.

M. Boulton, M. Różanowska and B. Różanowski, Journal of Photochemistry and Photobiology B: Biology, 2001. 64(2): p. 144-161. https://doi.org/10.1016/S1011-1344(01)00227-5

 


 

 

2000


The Lipofuscin Fluorophore A2E Mediates Blue Light– Induced Damage to Retinal Pigmented Epithelial Cells.

J.R. Sparrow, K. Nakanishi and C.A. Parish, Invest Ophthalmol Vis Sci. , 2000. 41: p. 1981–1989. https://iovs.arvojournals.org/article.aspx?articleid=2123554

 


Blue Light’s Effects on Rhodopsin: Photoreversal of Bleaching in Living Rat Eyes.

C. Grimm, C.E. Remé, P.O. Rol and T.P. Williams, Investigative Ophthalmology & Visual Science, 2000. 41(12): p. 3984-3990. https://iovs.arvojournals.org/article.aspx?articleid=2162704

 


 

 

1999


Blue light induced apoptosis in rat retina.

J. Wu, S. Seregard, B. Spångberg, M. Oskarsson, et al., Eye, 1999. 13: p. 577. https://doi.org/10.1038/eye.1999.142

 


 

 

1006


Light damage revisited: converging evidence, diverging views?

C. Remé, J. Reinboth, M. Clausen and F. Hafezi, Graefe’s Archive for Clinical and Experimental Ophthalmology, 1996. 234(1): p. 2-11. https://doi.org/10.1007/BF00186512

 


 

 

1084


Quantifying retinal irradiance levels in light damage experiments.

D.H. Sliney, Current Eye Research, 1984. 3(1): p. 175-179. https://doi.org/10.3109/02713688408997199

 


 

 

1981


Additivity and repair of actinic retinal lesions.

G.A. Griess and M.F. Blankenstein, Investigative Ophthalmology & Visual Science, 1981. 20(6): p. 803-807. https://iovs.arvojournals.org/article.aspx?articleid=2176197

 


 

 

1980


The nature of retinal radiation damage: Dependence on wavelength, power level and exposure time.

W.T. Ham, J.J. Ruffolo, H.A. Mueller and D. Guerry, Vision Research, 1980. 20(12): p. 1105-1111. https://doi.org/10.1016/0042-6989(80)90047-4

 


Retinal light exposure from ophthalmoscopes, slit lamps, and overhead surgical lamps. An analysis of potential hazards.

J.L. Calkins and B.F. Hochheimer, Investigative Ophthalmology & Visual Science, 1980. 19(9): p. 1009-1015. https://iovs.arvojournals.org/article.aspx?articleid=2159022

 


 

 

1979


Sensitivity of the retina to radiation damage as a function of wavelength.

W.T. Ham, H.A. Mueller, J.J. Ruffolo and A.M. Clarke, Photochemistry and Photobiology, 1979. 29: p. 735-743. https://doi.org/10.1111/j.1751-1097.1979.tb07759.x

Scroll to Top