Cognitive Performance & Productivity

2021


Screen time duration and timing: effects on obesity, physical activity, dry eyes, and learning ability in elementary school children

Y. Mineshita, H.-K. Kim, H. Chijiki, T. Nanba, et al., BMC public health, 2021. 21(1): p. 422-422. https://doi.org/10.1186/s12889-021-10484-7

 


 

 

2020


Monochromatic Blue Light Activates Suprachiasmatic Nucleus Neuronal Activity and Promotes Arousal in Mice Under Sevoflurane Anesthesia.

D. Liu, J. Li, J. Wu, J. Dai, et al., Frontiers in Neural Circuits, 2020. 14(55). https://doi.org/10.3389/fncir.2020.00055

 


The blue light effect you probably never thought about.

S. Fox, in Healio MedBlog. 2020, Primary Care Optometry News. https://www.healio.com/optometry/primary-care-optometry/news/blogs/{c6b2447b-d1a9-45b5-8fa8-a7a34b85e4ff}/neuro-optometric-rehabilitation-association-international/blog-the-blue-light-effect-you-probably-never-thought-about

 


Quality of Sleep Among Bedtime Smartphone Users.

B. Krishnan, R.K. Sanjeev and R.G. Latti, International journal of preventive medicine, 2020. 11: p. 114-114. https://doi.org/10.4103/ijpvm.IJPVM_266_19

 


 

 

2019


Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila.

T.R. Nash, E.S. Chow, A.D. Law, S.D. Fu, et al., npj Aging and Mechanisms of Disease, 2019. 5(1): p. 8. https://doi.org/10.1038/s41514-019-0038-6

 


Light Modulation of Human Clocks, Wake, and Sleep.

A.S. Prayag, M. Münch, D. Aeschbach, S.L. Chellappa, et al., Clocks & Sleep, 2019. 1(1): p. 193-208. https://doi.org/10.3390/clockssleep1010017

 


The effects of screen light filtering software on cognitive performance and sleep among night workers.

R. Kazemi, N. Alighanbari and Z. Zamanian, Health Promotion Perspectives, 2019. 9(3): p. 233-240. https://doi.org/10.15171/hpp.2019.32

 


Ocular and visual discomfort associated with smartphones, tablets and computers: what we do and do not know.

S. Jaiswal, L. Asper, J. Long, A. Lee, et al., Clinical and Experimental Optometry, 2019. 0(0). https://doi.org/10.1111/cxo.12851

 


 

 

2018


Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality.

S.A.R. Mortazavi, S. Parhoodeh, M.A. Hosseini, H. Arabi, et al., Journal of biomedical physics & engineering, 2018. 8(4): p. 375-380. https://pubmed.ncbi.nlm.nih.gov/30568927

 


Comparing task performance, visual comfort and alertness under different lighting sources: an experimental study.

R. Kazemi, A. Choobineh, S. Taheri and P. Rastipishe, EXCLI journal, 2018. 17: p. 1018-1029. https://doi.org/10.17179/excli2018-1676


Non-Image Forming Effects of Light on Brainwaves, Autonomic Nervous Activity, Fatigue, and Performance.

T. Askaripoor, M. Motamedzadeh, R. Golmohammadi, M. Farhadian, et al., Journal of Circadian Rhythms, 2018. 16: p. 9-9. https://doi.org/10.5334/jcr.167

 


Potential for the development of light therapies in mild traumatic brain injury.

A.C. Raikes, W.D. Killgore, Concussion, 2018. 3(3): p. CNC57. https://doi.org/10.2217/cnc-2018-0006

 


Light correlated color temperature and task switching performance in preschool-age children: Preliminary insights.

L.E. Hartstein, M.K. LeBourgeois, N.E. Berthier, PLOS ONE, 2018. 13(8): p. e0202973. https://doi.org/10.1371/journal.pone.0202973

 


Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.

A.S. Fisk, S.K.E. Tam, L.A. Brown, V.V. Vyazovskiy, et al., Frontiers in Neurology, 2018. 9: p. 56. https://doi.org/10.3389/fneur.2018.00056

 


Plasticity in the Sensitivity to Light in Aging: Decreased Non-visual Impact of Light on Cognitive Brain Activity in Older Individuals but No Impact of Lens Replacement.

V. Daneault, M. Dumont, É. Massé, P. Forcier, et al., Frontiers in physiology, 2018. 9: p. 1557-1557. https://doi.org/10.3389/fphys.2018.01557

 


 

 

2017


Effects of Illuminance and Correlated Color Temperature on Daytime Cognitive Performance, Subjective Mood, and Alertness in Healthy Adults.

Y. Zhu, M. Yang, Y. Yao, X. Xiong, et al., Environment and Behavior, 2017. 51(2): p. 199-230. https://doi.org/10.1177/0013916517738077

 


The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study.

M. Motamedzadeh, R. Golmohammadi, R. Kazemi and R. Heidarimoghadam, Physiology & Behavior, 2017. 177: p. 208-214. https://doi.org/10.1016/j.physbeh.2017.05.008

 


The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

S.A. Rahman, M.A. St Hilaire and S.W. Lockley, Physiol Behav, 2017. 177: p. 221-229. https://doi.org/10.1016/j.physbeh.2017.05.002

 


Short and long-term health consequences of sleep disruption.

G. Medic, M. Wille and M.E. Hemels, Nature and science of sleep, 2017. 9: p. 151-161. https://doi.org/10.2147/NSS.S134864

 


Effects of Blue Light on Cognitive Performance.

N. Bansal, N.R. Prakash, J.S. Randhawa and P. Kalra, International Research Journal of Engineering and Technology (IRJET) 2017. 04(06). https://www.irjet.net/archives/V4/i6/IRJET-V4I6475.pdf

 


Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain.

S. Bajaj, J.R. Vanuk, R. Smith, N.S. Dailey, et al., Frontiers in Neurology, 2017. 8:616. https://doi.org/10.3389/fneur.2017.00616

 


Digital Screen Media and Cognitive Development.

D.R. Anderson and K. Subrahmanyam, Pediatrics, 2017. 140: p. S57. https://doi.org/10.1542/peds.2016-1758C

 


 

 

2016


Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.

Y. Touitou, D. Touitou and A. Reinberg, Journal of Physiology-Paris, 2016. 110(4, Part B): p. 467-479. https://doi.org/10.1016/j.jphysparis.2017.05.001

 


Aging-Related Circadian Disruption and Its Correction.

D.G. Gubin, T.V. Bolotnova, S.S. V, A.G. Naymushina, et al., in Treatment Options for Aging, SMGroup, Editor. 2016, SMGroup. http://www.smgebooks.com/treatment-options-for-aging/chapters/TOA-16-02.pdf

 


Light-sensitive brain pathways and aging.

V. Daneault, M. Dumont, É. Massé, G. Vandewalle, et al., Journal of Physiological Anthropology, 2016. 35(1): p. 9. https://doi.org/10.1186/s40101-016-0091-9

 


Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task.

A. Alkozei, R. Smith, D.A. Pisner, J.R. Vanuk, et al., Sleep, 2016. 39(9): p. 1671-1680. https://doi.org/10.5665/sleep.6090

 


 

 

2015


Blue Blocker Glasses as a Countermeasure for Alerting Effects of Evening Light-Emitting Diode Screen Exposure in Male Teenagers.

S. van der Lely, S. Frey, C. Garbazza, A. Wirz-Justice, et al., Journal of Adolescent Health, 2015. 56(1): p. 113-119. https://doi.org/10.1016/j.jadohealth.2014.08.002

 


Blue Light: A Blessing or a Curse?

C.C. Gomes and S. Preto, Procedia Manufacturing, 2015. 3: p. 4472-4479. https://doi.org/10.1016/j.promfg.2015.07.459


Benefits and costs of artificial nighttime lighting of the environment.

K.J. Gaston, S. Gaston, J. Bennie and J. Hopkins, Environmental Reviews, 2015. 23(1): p. 14-23. https://doi.org/10.1139/er-2014-0041

 


 

 

2013


Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals.

G. Vandewalle, O. Collignon, J. Hull, V. Daneault, et al., Journal of Cognitive Neuroscience, 2013. 25: p. 1-14. https://doi.org/10.1162/jocn_a_00450

 


Mammalian Inner Retinal Photoreception.

R.J. Lucas, Current Biology, 2013. 23(3): p. R125-R133. https://dx.doi.org/10.1016/j.cub.2012.12.029

 


Treatment of attention deficit hyperactivity disorder insomnia with blue wavelength light-blocking glasses.

R.E. Fargason, T. Preston, E. Hammond, R. May, et al.Chrono. Physiology and Therapy, 2013. 3: p. 1-8. https://doi.org/10.2147/cpt.s37985

 


A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans.

C.M. Beaven and J. Ekström, PLOS ONE, 2013. 8(10): p. e76707. https://doi.org/10.1371/journal.pone.0076707

 


 

 

2012


The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency.

S.P.A. Drummond, D.E. Anderson, L.D. Straus, E.K. Vogel, et al., PLOS ONE, 2012. 7(4): p. e35653. https://doi.org/10.1371/journal.pone.0035653

 


 

 

2011


Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

C. Cajochen, S. Frey, D. Anders, J. Späti, et al., Journal of Applied Physiology, 2011. 110: p. 1432-1438. https://doi.org/10.1152/japplphysiol.00165.2011.

 


 

 

2008


Circadian photoreception: ageing and the eye’s important role in systemic health.

P.L. Turner and M.A. Mainster, The British journal of ophthalmology, 2008. 92(11): p. 1439-1444. https://doi.org/10.1136/bjo.2008.141747

 


 

 

2007


Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem.

G. Vandewalle, C. Schmidt, G. Albouy, V. Sterpenich, et al., PLOS ONE, 2007. 2(11): p. e1247. https://doi.org/10.1371/journal.pone.0001247

 


Scroll to Top